Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot

Identifieur interne : 000F92 ( Main/Repository ); précédent : 000F91; suivant : 000F93

Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot

Auteurs : RBID : Pascal:13-0131269

Descripteurs français

English descriptors

Abstract

The present work investigates the effects of relevant parameters of InAs/GaAs quantum dot and photonic crystal slab-based microcavity on the QD-cavity coupling characteristics, in detail. We employ variational approach to find exciton state in QD and to find cavity modes we use the open source GME code. Calculations have performed in linear regime where excitons behave as bosons which correspond to the limit of low excitation. The dynamics of the system are studied using the first order correlation function (G(1)(t,τ)). We will show how G(1) varies with time in both strong and weak coupling regimes. Our results indicate that the achieving of strong coupling regime is affected by the size of the quantum dot and how to engineer the photonic crystal microcavity to maximize the ratio of quality factor and mode volume.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0131269

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot</title>
<author>
<name sortKey="Mehdizadeh Khasraghi, A" uniqKey="Mehdizadeh Khasraghi A">A. Mehdizadeh Khasraghi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Solid State Physics, Faculty of Physics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shojaei, S" uniqKey="Shojaei S">S. Shojaei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Photonics Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soltani Vala, A" uniqKey="Soltani Vala A">A. Soltani Vala</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Solid State Physics, Faculty of Physics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalafi, M" uniqKey="Kalafi M">M. Kalafi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Solid State Physics, Faculty of Physics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Photonics Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Excellence Center for Photonics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Tabriz 51665-163</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0131269</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0131269 INIST</idno>
<idno type="RBID">Pascal:13-0131269</idno>
<idno type="wicri:Area/Main/Corpus">001039</idno>
<idno type="wicri:Area/Main/Repository">000F92</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Correlation functions</term>
<term>Excitons</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Microcavities</term>
<term>Nanostructured materials</term>
<term>Photonic crystals</term>
<term>Quality factor</term>
<term>Quantum dots</term>
<term>Semiconductor quantum dots</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cristal photonique</term>
<term>Microcavité</term>
<term>Point quantique semiconducteur</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure de gallium</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Exciton</term>
<term>Fonction corrélation</term>
<term>Facteur qualité</term>
<term>4270Q</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present work investigates the effects of relevant parameters of InAs/GaAs quantum dot and photonic crystal slab-based microcavity on the QD-cavity coupling characteristics, in detail. We employ variational approach to find exciton state in QD and to find cavity modes we use the open source GME code. Calculations have performed in linear regime where excitons behave as bosons which correspond to the limit of low excitation. The dynamics of the system are studied using the first order correlation function (G
<sup>(1)</sup>
(t,τ)). We will show how G
<sup>(1)</sup>
varies with time in both strong and weak coupling regimes. Our results indicate that the achieving of strong coupling regime is affected by the size of the quantum dot and how to engineer the photonic crystal microcavity to maximize the ratio of quality factor and mode volume.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>47</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MEHDIZADEH KHASRAGHI (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHOJAEI (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SOLTANI VALA (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KALAFI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Solid State Physics, Faculty of Physics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Photonics Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Excellence Center for Photonics, University of Tabriz</s1>
<s2>Tabriz 51665-163</s2>
<s3>IRN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>17-24</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000506299720040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0131269</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The present work investigates the effects of relevant parameters of InAs/GaAs quantum dot and photonic crystal slab-based microcavity on the QD-cavity coupling characteristics, in detail. We employ variational approach to find exciton state in QD and to find cavity modes we use the open source GME code. Calculations have performed in linear regime where excitons behave as bosons which correspond to the limit of low excitation. The dynamics of the system are studied using the first order correlation function (G
<sup>(1)</sup>
(t,τ)). We will show how G
<sup>(1)</sup>
varies with time in both strong and weak coupling regimes. Our results indicate that the achieving of strong coupling regime is affected by the size of the quantum dot and how to engineer the photonic crystal microcavity to maximize the ratio of quality factor and mode volume.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70Q</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cristal photonique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photonic crystals</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Microcavité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Microcavities</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Fonction corrélation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Correlation functions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Facteur qualité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quality factor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>4270Q</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0131269
   |texte=   Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024